Extensions 1→N→G→Q→1 with N=C32xA4 and Q=C22

Direct product G=NxQ with N=C32xA4 and Q=C22
dρLabelID
A4xC62108A4xC6^2432,770

Semidirect products G=N:Q with N=C32xA4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C32xA4):1C22 = C3xS3xS4φ: C22/C1C22 ⊆ Out C32xA4246(C3^2xA4):1C2^2432,745
(C32xA4):2C22 = C3:S3xS4φ: C22/C1C22 ⊆ Out C32xA436(C3^2xA4):2C2^2432,746
(C32xA4):3C22 = S3xC3:S4φ: C22/C1C22 ⊆ Out C32xA42412+(C3^2xA4):3C2^2432,747
(C32xA4):4C22 = C62:10D6φ: C22/C1C22 ⊆ Out C32xA42412+(C3^2xA4):4C2^2432,748
(C32xA4):5C22 = S32xA4φ: C22/C1C22 ⊆ Out C32xA42412+(C3^2xA4):5C2^2432,749
(C32xA4):6C22 = C3xC6xS4φ: C22/C2C2 ⊆ Out C32xA454(C3^2xA4):6C2^2432,760
(C32xA4):7C22 = C6xC3:S4φ: C22/C2C2 ⊆ Out C32xA4366(C3^2xA4):7C2^2432,761
(C32xA4):8C22 = C2xC32:4S4φ: C22/C2C2 ⊆ Out C32xA454(C3^2xA4):8C2^2432,762
(C32xA4):9C22 = S3xC6xA4φ: C22/C2C2 ⊆ Out C32xA4366(C3^2xA4):9C2^2432,763
(C32xA4):10C22 = C2xA4xC3:S3φ: C22/C2C2 ⊆ Out C32xA454(C3^2xA4):10C2^2432,764


׿
x
:
Z
F
o
wr
Q
<